
On Finite Difference Methods of Solution of the 
Transport Equation 

By R. P. Pearce and A. R. Mitchell 

1. Introduction. In recent years several difference schemes have been proposed 
for sol-ing the transport equation 

(1)~ ~ ~~~' dt V(x, t, u) = F(x, t, u) at c 

in one form or another, where V is the velocity of propagation of a profile given 
initially along the x-axis. Most of these schemes can be found in Richtmyer [1] 
and, generally speaking, they are chosen primarily from the point of view of sta- 
bility. 

An equation of the type (1) has a single family of characteristics in the (x, t) 
plane and in any step-by-step method of solution it is essential from the point of 
view of accuracy that the characteristics be followed as closely as possible. It is 
proposed to examine existing difference schemes from this standpoint and to derive 
new formulas of greater accuracy. For the purposes of this paper, it is sufficient to 
consider the simplified version of (1) 

Olu Olu 
(2) t +Vd =?0 

where V is constant, from which it follows that the given profile at t = 0 is propa- 
gated without change of shape in the direction of the x-axis with velocity V. If a 
difference scheme fails to give an accurate solution of (2), it is pointless to con- 
sider it as a means of solving more complicated forms of (1), in particular, forms 
which incorporate variable velocity of propagation and source or sink terms. On 
the other hand, it is realized that schemes which successfully solve (2) may not 
give comparable accuracy when used to solve (1). In the case of (1), the char- 
acteristics are curved and can only be determined by integration of the equation 
dx du 

t-_= V(x, t, u). In addition, the equation W = F(x, t, u) has to be solved. These 

computations, however, involve only numerical integration, a process which can 
be made as accurate as required in most problems. 

2. Stable Finite Difference Schemes Now in Use. Existing stable difference 
schemes will now be discussed with reference, to equation (2). The characteristics 
of the latter are straight lines inclined to the t-axis at an angle 

(3) 0 = tan-'V. 

In these schemes, the parameter p is introduced where p = A , and Ax and At 

are the respective mesh leiigths in the x and t directions. 
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Difference System I (Friedrichs [2]). This is given by 

(4) Ur,s+l = 2(1 - P)Ur+i,s + 2(1 + P)Ur-l,s 

where x = rAx and t = sAt. This system can be obtained by replacing d and 
au 

ax at 
at the node (r, s) by 2(Ur+ls - Ur-i,s) and 

1 
(Ur,s+l - urs) respectively, then 

substituting 2 (Ur+ls + Ur-1,s) for Ur,s. Another and more satisfactory way of de- 
riving (4) is now proposed. In Figure 1, the characteristic through P cuts AC in 
P1 where BP1 = pAx, and it follows that up = up, . Since P1 is not a mesh point, 
the value of u at Pi may be obtained by linear interpolation between A and C, 
and so (4) is obtained. In addition, since the coefficients on the right-hand side of 
(4) have sum unity, the solution computed by (4) is bounded if both coefficients 
are positive which leads immediately to the condition I p < 1 for stability (Richt- 
myer [1], p. 43). 

Difference System II (Carlson [3]). This system is given by 

(5a) 'Ur.s?i = (1 - P)Ur,s + pUr-i_s (0 < p ? 1) 

1 ~~p 
(5b) 11r.s+1 = Ur,. + Ur-],s+l (p > 1) 

I+ p I s p 

aind two similar formulas if p < 0. 
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In Figure 2, PP1 is the characteristic through P. In this scheme, three points 
only are used, the choice of points depending on the position of P1 . If 0 ? p < 1, 
P1 lies between B and C and the formula used is (5a), whereas if p > 1, P1 lies 
outside BC and the formula used is (5b). It is presumed that these formulas were 

obtained originally by replacing dt by -(ur,S+- ur,s) and -x by 
1 

(Ur,s - Ur-1,s) at At ax Ax 

or - (Ur,9+1 - Ur-l,s+l) for 0 < p ? 1 and p > 1 respectively. Ax P 

When P1 lies between B and C (Figure 2a) it follows that BP1: P10 = p: - p. 
Trhus, on using linear interpolation between B and C together with the result 
Up = Up, ,formula (5a) is obtained. When P1 lies beyond C (Figure 2b) it can be 
shown that BP2: P2R = p: 1, and so using linear interpolation between B and R 
together with up = Up2, formula (5b) is obtained. The solution computed by (5) 
is bounded for all p, as the right-hand sides of both (5a) and (5b) sum to unity 
and have positive coefficients. 

As Carlson's scheme has been used extensively to solve problems involving the 
transport equation [1], [4], it is worth studying in some detail with a view to 
determining its probable accuracy. If 0 < p < 1, formula (5a) is as accurate as 
the linear interpolation of u between B and C. As these are neighboring mesh points 
on t = sAt, the line of most recently computed values of u, it is to be expected that 
(5a) will give reasonably accurate values of u. Certainly (5a) will be superior to 
scheme (4) proposed by Friedrichs since the latter uses linear interpolation of u 
between A and C, mesh points two distance intervals apart. If p > 1, however, a 
much less satisfactory state of affairs exists. In Figure 2b, RR1 is the characteristic 
through R, and theoretically UR = UR1 . Similarly, up = up, and (5b) becomes 
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1 P 
Up1 = UB + + URI 

Since BP,: PjR = p:1, this formula is equivalent to linear interpolatioll between 
B and R, which for large values of p, where B and R1 are many distance intervals 
apart, may be very inaccurate. In fact, the foregoing seems to suggest that implicit 
schemes in general are poor, particularly for large values of p. 

Difference System III (Central Difference Formula). This is given by 

(6) Ur,s+l = Ur,s-l - PUr+1,s + PUr-1s S 

and has been used with success by Malkus and Witt [5] to solve some problems in 
meteorology involving transport of temperature and vorticity in two dimensions. 

It is obtained by replacing -t by (Ur s+l - Ur,e-1) and -X by - (Ur+1 - Ur-i,.). at 2At ft 2Ax 
Alternatively, from Figure 3, if GG, and PP, are the characteristics through G and 
P respectively, so thatUG = UG, and up = up, , (6) may be written as 

UpI = UGI - PUA + PUC. 

This result is equivalent to using a parabolic interpolation formula incorporating 
values of u at A, G,, and C, thus (6) is expected to be ani accurate formula, par- 
ticularly for small values of I p 1. In fact, (6) is stable for -1 < p _ 1, and can 
only be used if G, and P1 lie between A and C. 

It is interesting to compare the foregoing predictions of accuracy with numerical 
calculations carried out using difference systems I, II, and III in turn to solve (2). 
Two initial profiles of u are considered, the "roof top" and the "sine" and these are 

illustrated in Figure 4. All calculations are carried out until a tinme 69x is reached. 

A 

_5 
r 

C 
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FIG. 3 
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Theoretical values are used at the second time step in order to start the calculation 
using System III. The results, accurate to 0.00 1, are shown in Tables 1(a) and 1(b) 
for the "roof top" and "sine" profiles respectively. The last row of these tables 
gives the sum of the moduli of the errors E I e 1. The outstanding features of these 
results are the poor accuracy of Carlson's scheme for I p i > 1, and the compara- 
tively high accuraev of the central difference formula. 

3. Two-Level Interpolation Schemes. As a consequence of the last section, 
explicit difference schemes which are high accuracy interpolation formulas seem 
most likely to succeed in obtaining accurate solutions of the transport equation. 
With this in mind, several new two-level formulas are now proposed and used to 
solve (2). These formulas give ur,s+l in terms of u at nodes on the time step s. 

I. Linear Interpolation Formulas. 

(7a) Urs-tl = (1 - P)ur,s + Pur-l,s (0 ? p ? 1) 

(7b) Ur_s+l = (2 - p)ur-l.s + (p - l)Ur-2,s (1 ? p ? 2) 

(7c) Ur,s,-i= (n + 1 - P)Ur-n,s + (p- n)Ur-n-l,s (n ? p _ n + 1). 

These formulas are obtained in the following manner using Figure 3. If PP, is the 
characteristic through P so that up = up1 and P1 lies between B and C, then 
BP1: P1C = p:1 - p, and by using linear interpolation of u between B and C, 
formula (7a) is obtained. If the characteristic through P cuts the line s in P2 
between C and D, then CP2: P2D = p - 1:2 - p, and linear interpolation of u 
betweeni C and D gives formula (7b). A similar method may be used for values of p 
greater than 2. 

The general result for any value of p lying between integers i anid n + 1, where 
n may be positive or negative, is given by (7c). The formulas are stable since the 
coefficients on the right-hand sides are positive and add to unitv in correspondilng 
pairs. 
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TABLE 1 (a) 

Scheme 

Fried- 
Correct richs Carlson Central Difference 

rV alues -_ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ 

p 2 2 3 4 2 4 

s 12 12 2 24 12 8 

-10 0 - _ . 0.001 0 0 
-9 0 . -0.005 -0.003 0 
-8 0 - 0.007 0.002 0 
-7 0 . -0.028 -0.024 -0.016 
-6 0 - i 0.029 0.015 0.005 
-5 0 I -0.051 -0.045 -0.033 
-4 0 0.001 0 - 0.012 0.006 0.001 
-3 0 0.003 0 _ 0.053 0.052 0.047 
-2 0 0.010 0 - -0.059 -0.032 -0.010 
-1 0 0.017 0 _ 0.027 0.006 -0.024 

0 0 0.044 0 0.032 0.008 0.014 0.008 
1 0 0.071 0.001 0.110 0.166 0.166 0.153 
2 0 0.147 0.011 0.241 -0.105 -0.067 -0.024 
3 0 0.223 0.047 0.424 -0.270 -0.267 -0.239 
4 0 0.384 0.144 0.657 0.021 -0.022 -0.022 
5 0 0.545 0.338 0.934 0.200 0.213 0.215 
6 0.5 0.796 0.644 1.188 0.465 0.490 0.515 
7 1.0 1.046 1.044 1.382 0.842 0.816 0.793 
8 1.5 1.311 1.488 1.498 1.676 1.620 1.546 
9 2.0 1.575 1.906 1.532 2.403 2.388 2.334 

10 2.5 1.715 2.210 1.487 2.605 2.592 2.577 
11 3.0 1.856 2.323 1.368 2.631 2.652 2.708 
12 2.5 1.773 2.210 1.216 2.426 2.413 2.419 
13 2.0 1.691 1.906 1.055 .2a.023 2.050 2.086 
14 1.5 1.428 1.488 0.898 1.408 1.436 1.477 
15 1.0 1.166 1.044 0.753 0.817 0.828 0.856 
16 0.5 0.873 0.644 0.625 0.424 0.440 0.456 
17 0 0.580 0.338 0.514 0.169 0.152 0.116 
18 i 0 0.385 0.144 0.419 0.070 0.066 0.050 
19 0 0.190 0.047 0.339 0.019 0.012 0 
20 1 0 0.110 0.011 0.274 0.006 0.004 0 
21 0 0.031 0.001 0.219 0 0 0 
22 0 0.015 0 0.175 
23 0 0 0 0.139 
24 0 0 0 0.110 
25 0 0 !0 0.087 - _ 
26 0 0 0 0.069 _ _ _ 
97 0 0 0 0.054 
28 0 _ - 0.042 _ 
29 0 ! - 0.033 
30 0 -< 0.026 _ 
31 0 I 0.020 - _ 
7~ ! e I 7.298 2.907 12.308 3.000 2.723 2.312 
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TABLE 1 (b) 

Scheme 

Friedrichs Carlson Central Correct Difference r ! Values 
p 1 1 1 

s 1 2 1 2 2 1 2 

0 -0.707 -0.317 -0.560 -0.477 -0.671 
1 -0.924 -0.439 -0.731 -0.388 -0.897 
2 -1.000 -0.495 -0.792 -0.269 -0.996 
3 -0.924 -0.475 -0.731 -0.128 -0.938 
4 -0.707 -0.383 -0.560 0.022 -0.738 
5 -0.383 -0.232 -0.303 0.162 -0.430 
6 0 -0.046 0 0.276 -0.047 
7 0.383 0.146 0.303 0.346 0.350 
8 0.707 0.317 0.560 0.364 0.671 
9 0.924 0.439 0.732 0.327 0.897 

10 1.000 0.495 0.792 0.242 0.996 
11 0.924 0.475 0.732 0.121 0.938 
12 0.707 0.383 0.560 -0.016 0.738 
13 0.383 0.232 0.303 -0.150 0.430 
14 0 0.046 0 -0.261 0.047 
15 -0.383 -0.146 -0.303 -0.330 -0.350 

E leI 5.174 2.094 7.950 0.478 

II. Parabolic Interpolation Formulas. 

(8) Ur,s+l = 2 (p n) (n + 1 - P)Ur+1-n,s + (p - n + 1)(n + 1 - P)Ur-n,s 

+ l(p -n)(p - n +1 )Ur--n,s (n ? p ? n + 1). 

Referring again to Figure 5, if PP1 is the characteristic through P, where P1 lies 
between B and C, and if a parabolic interpolation formula incorporating the values 
of u at A, B and C is used to give u at points between B and C then Ur,s+1 is given 
by (8) with n = 0. If the characteristic through P cuts the line s at P2 where P2 
lies between C and D, and a parabolic interpolation formula incorporating the values 
of u at B, C, and D is used to give u at points between C and D, then Ur,s+1 is given 
by (8) with n = 1, and so on for higher values of n. Finally, the stability of (8) is 
easily demonstrated by using methods described in Richtmyer [1], since the equa- 
tions are linear and have constant coefficients. Other stable parabolic interpolation 
schemes based on (8) are possible but they are unlikely to be more accurate than 
(8) with the original range of p stated. 

III. Cubic Interpolation Formulas. 

(9) ur,s+l = - (p - n)(n + 1 -p)(n + 2- P) Ur+i-n,s 

? 2(n + 2 - p)(n + 1-p)(p + 1 n-)r-,s 

2 (p - n)(n +-2 - p)(p + 1 -)r-l-n,s 

- - n)(n + 1 - p)(p + 1 -n)Ur-2-n,s (n < p ? n ? 1). 
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From Figure 5, if P1 lies between B and C, and a cubic interpolation formula based 
on the values of u at A, B, C, and D is used to give values of u between B and C, 
then ur,s,+ is given by (9) with n = 0. If, however, PP2 is the characteristic through 
P where P2 lies between C and D, and a cubic interpolation formula based on the 
values of u at B, C, D and E is used to give values of u between C and D, then 
Ur,s+l is given by (9) with n = 1, and so on. Formula (9) is stable not only for the 
range of p stated but for the extended range n - 1 ? p < n + 2, and so other 
cubic interpolation schemes based on (9) are possible. One other possible scheme is 
(9) together with ni- - p < n + 2 for n = -6, -3, O, 3, 6, . It is 
unlikely, however, that any of the other schemes will be as accurate as (9) with the 
original range of p stated and n any integer. 

4. Three-Level Formulas. So far the only three-level scheme discussed is the 
central difference formula. This gives Ur,8?l in terms of u at nodes on the time steps 
s - 1 and s. Other three-level formulas suitable for limited ranges of values of p 
are now proposed. 
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Referring to Figure 6, PP1, GG, and HH1 are the characteristics through P, G, 
and H respectively, thus up = Up1, UG = UG, and UH = UH1. If P1 lies between B 
and C, and a cubic interpolation formula incorporating the values of u at G,, B, 
H,, and C is used to give the values of u at points between B and C, then the value 
of u at P is given by 

(10) +i 
(1 - 2p)(1 p) Ur,s-1 + 2(1 - 2p)Ur-q 

(10) 

+ 2pu-. - 2p(l - 2p) Ur-ls. 
1 + p 

In Figure 7, PP,, HHI, and II, are the characteristics through P, H, and I 
respectively, thus up = Up, , uH = UH1 , and u, = u1. If P, lies between B and C, 
and a cubic interpolation formula incorporating the values of u at B, H,, C and I, 
is used to give the values of u at points between B and C, then the value of u at P 
is given by 

V-r, S+i 
2(2p - 1)(1 - 2 Ur,s + 2(1 - P)Ur-l,s-i 

(11) 2(--1 

+ 2 ( 2 p - 1) Ur-l,,s - p2p- Ur_2.s-1- 
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The stability of (10) and (11) for the range 0 ? p ? 1 can be demonstrated in the 
usual manner. 

Numerical calculations are now carried out using selected two- and three-level 
interpolation schemes to solve (2). The results are shown in Tables 2(a) and 
2 (b). The errors are shown in the last two rows where I e I is the sum of the 

moduli of the errors after a time 6 and el I refers to the errors at a later stage 
V 

in the computation when the profile has been transported over a further time 
6 xI the case of the three-level formula (11), after a time 36 the sums of 

the moduli of the errors are still only 0.660 and 0.026 for the "roof top" and "sine" 
curves respectively. The results shown in Tables 2(a) and 2(b) are for values of p 
lying between 0 and 1, but in the case of the two-level schemes they may be inter- 
preted for values of p outside this range. For example, the figures for p = 2 refer 
also to p = n + 2 if the profile is moved on a further 12n intervals of x. 

5. Interpolation Formulas and Finite Difference Schemes. In view of the form 
of the transport equation, a close link might be expected between interpolation 
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TABLE 2(a) 

Scheme 

Parabolic Cubic Three-Level Three-Level 
Correct Formula (8) Formula (9) Formula (10) Formula (11) r Values 

p 2 2 4 4 

s 12 12 24 8 

-4 0 0 0 0 0 
-3 0 0.001 0 0 0 
-2 0 -0.004 0 0 0 
-1 0 -0.004 0 0 0 

0 0 0.020 0 0 0 
1 0 0.024 0.003 0 0 
2 0 -0.045 -0.005 0 0 
3 0 -0.126 -0.032 -0.003 0.001 
4 0 -0.068 -0.026 -0.027 -0.011 
5 0 0.165 0.121 0.063 0.038 
6 0.5 0.502 0.471 0.471 0.479 
7 1.0 0.961 0.961 1.003 1.000 
8 1.5 1.591 1.505 1.498 1.499 
9 2.0 2.248 2.068 2.007 1.997 

10 2.5 2.651 2.554 2.555 2.522 
11 3.0 2.682 2.757 2.872 2.923 
12 2.5 2.433 2.554 2.557 2.541 
13 2.0 2.006 2.068 1.992 1.999 
14 1.a 1.452 1.505 1.501 1.500 
15 1.0 0.876 0.961 0.996 1.001 
16 0.5 0.421 0.471 0.472 0.488 
17 0 0.156 0.121 0.063 0.038 
18 0 0.043 -0.026 -0.028 -0.020 
19 0 0.008 -0.032 0.003 0 
20 0 0.001 -0.005 0 0 
21 0 0 0.003 0 0 
22 0 0 0 0 0 
23 0 0 0 0 0 
24 0 0 0 0 0 
25 0 0 0 0 0 
26 0 0 0 0 0 

E eI 1.838 1.007 0.509 0.287 

Z\eil 2.644 1.169 0.660 0.432 

formulas and difference schemes used to solve (2). This is best illustrated by means 

of an example. Consider the problem of evolving a finite difference replacement of 

(2) which makes use of the points P, B, C, and D in Figure a. Taylor expansions 
about the point B give 

(12) Ur,s+l -= Urs + At (a) 

(13) UT-IS = UI,. - .\x - Ur-1, s-Ur's -A V9X)rs _! \aX2/r,s 
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TABLE 2(b) 

Scheme 

Parabolic Cubic Three-Level Three-Level 

r Correct Formula (8) Formula (9) Formula (10) Formula (11) 
Values 

p 1 1 
4 

3 

s 12 12 24 8 

0 -0.707 -0.733 -0.702 -0.706 I -0.706 
1 -0.924 -0.933 -0.917 -0.922 -0.923 
2 -1.000 -0.992 -0.993 -0.999 -0.999 
3 -0.924 -0.900 -0.917 -0.923 -0.923 
4 -0.707 -0.670 -0.702 -0.706 1 -0.706 
5 -0.383 -0.338 -0.380 -0.382 -0.382 
6 0 0.044 0 0 0 
7 0.383 0.420 0.380 0.382 0.382 
8 0.707 0.733 0.702 0.706 0.706 
9 0.924 0.933 0.917 0.922 0.923 

10 1.000 0.992 0.993 0.999 0.999 
11 0.924 0.900 0.917 0.923 I 0.923 
12 0.707 0.670 0.702 0.706 0.706 
13 0.383 0.338 0.380 0.382 0.382 
14 0 -0.044 0 0 0 
15 -0.383 -0.420 -0.380 -0.382 -0.382 

E el I 0.460 0.074 0.016 0.014 

ZleIl 0.914 0.144 0.026 1 0.014 

and 

(14) Ur-2,S= Urs - 2AX(a ) + 2(x) ( 2) 

The value of (at) is obtained from (12) alnd (au) by eliminating( a) 

from (13) and (14). These values are then substituted into (2) to give 

(15) Ur,9+1 = ( -2 Ur,s + 2pUr-1,s - Ur-2,s 

The truncation error in (15) is dominated by the term I( At)2( -)r s neglected in 

(12) and since by differentiating (2) the result 

a9u _V2a09U 
(16) at2 = 2 

2 

is obtained, it follows that the principal part of the truncation error is 2p2(Ax)2 
U 

This is the standard finite difference approach which can, however, be improved in 
the following manner. Replace equation (12) by 

(17) = Uau + It (t)2 (a 
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which, on using (2) and (16) becomes 

(18) Ur, ,Urs PAX ax 2 P(x) a2ur9 

If (d ) and ( u2) are now eliminated from (13), (14), and (18), the parabolic 
\aX r,s \Xr, 

interpolation formula (8) with n = 1 is obtained with truncation error 
3 

1p(l - p)(2 -P)(X)3 
U 

This is a distinct improvement over the previous finite difference formula (15), 
and in particular if p is close to unity, the interpolation formula is expected to be 
specially accurate when used to solve (2). If p = 1, of course, the theoretical solu- 
tion of the interpolation formula (8) with n = 1 is the same as the theoretical solu- 
tion of (2). However, as it is intended to use the results of the present investigation 
to solve the general transport equation (1), the exact correspondence of the theo- 
retical solutions of (2) when p = 1 can really be ignored. This example illustrates 
the fact that the best finite difference formula for a given set of points used to solve 
(2) is an interpolation formula. This is because each derivative with respect to a 

TABLE 3 

Scheme Formula Truncation Error Number 

2 

Friedrichs (4) (1 -p2)(Ax)22U 

a2u Carlson 0 < p ?1 (5a) P(1 -p)()2du 
2 TX~~~~~~2 

Carlson p > 1 (5b) ip(p + 1?)(X)2 a?U 

Central Difference (6) - -p(1 _ p2)(Ax 

2 

Linear Interpolation (7c) -(n - p)(n - p + 1)(Ax)2 am 

3 

Parabolic Interpolation (8) -(n - p - 1)(n -p)(n -p ? 1)(AX)3 
U 

ax, 
Cubic Interpolation (9) l4(n - p ) (n -p) (n -p + 1) 

*(n-p + 2) (Ax)4 a4u aX4 

Three-Level I (10) -~p2(1 - p)(1 - 2p) (Ax4) a4U 

494u 

Three-Level II (1 1) 2pl-p21 p(x ax4 
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co-ordinate is a constant multiple of the corresponding derivative with respect to 
the other co-ordinate, thus the Taylor expansions can all be expressed in terms of a 
single variable. Elimination of the maximum possible number of derivatives with 
respect to this variable leads to an interpolation formula. 

6. Truncation Errors. For purposes of comparison, the truncation errors asso- 
ciated with the finite difference schemes considered for solving (2) are given in 
Table 3. The errors quoted are Ax times the errors as defined by Richtmyer 
[1,p. 19]. 

7. Conclusions. The calculations carried out in the present paper, using existing 
stable finite difference schemes in turn to solve the simplified transport equation 
(2), vary considerably in accuracy. The central difference formula (6) is most 
accurate with Carlson's scheme for I p ? < 1 next in order of merit. Carlson's 
implicit scheme for I p I > 1 is very poor, particularly for large values of I p 1I 
This is illustrated in Figure 8 where the part of the truncation error depending on p 
is shown as a function (E) of p. It can be seen that the maximum value of the trun- 
cation error when 0 < p < 1 is one-eighth of the minimum value when p > 1. In 
fact, the authors believe that implicit schemes can be abandoned as a means of 
obtaining accurate solutions of the transport equation. 

New explicit schemes, derived as interpolation formulas, are next used to solve 
(2) and a considerable improvement in accuracy is obtained, particularly for 
schemes such as (9), (10), and (11), which are cubic interpolation formulas with a 
very small truncation error. The error in any numerical solution of (2) takes the 
form of a smoothing out of the initial profile together with, in most cases, a super- 
posed stable oscillation. 

3 

0 ? p 
FIG. 8 
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It cannot be emphasized too strongly, however, that schemes which successfully 
solve (2) do not necessarily give comparable accuracy when used to solve (1), 
where V is a function of x, t, and u. On the other hand, difference schemes which fail 
to give accurate solutions of (2), can hardly be expected to be more successful when 
used to solve (1). The main difficulty in solving (1) numerically arises from the 
fact that the characteristics are curved and the distance BP1 (Figures 1, 2, 3, 5, 6, 7) 
is no longer given simply by VAt or pAx. It must be found by integrating the equa- 
tion 

( 19 ) dx _ V(x, t, u) = 0. 
dt 

If, in the case of curved characteristics, BP1 is now expressed as p'Ax, any one of 
the interpolation formulas proposed in the present paper may be applied directly 
with p' substituted for p. The value of p' is, of course, in general different at each 
node. 

In deciding the values of Ax and At for a given calculation, Ax is first chosen to 
represent adequately the initial profile. The time step At is then chosen so that 
BP1 is large enough for the calculation to proceed without too many interpolations 
but not so large that the positions of P1 , obtained from (19), are too much in error. 
We hope to examine in detail at a later date the general problem of integrating 
(1) - 
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